Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38730849

ABSTRACT

This study represents an advancement in the field of composite material engineering, focusing on the synthesis of composite materials derived from porous hydroxyapatite via surface modification employing cucurbit[n]urils, which are highly promising macrocyclic compounds. The surface modification procedure entailed the application of cucurbit[n]urils in an aqueous medium onto the hydroxyapatite surface. A comprehensive characterization of the resulting materials was undertaken, employing analytical techniques including infrared (IR) spectroscopy and scanning electron microscopy (SEM). Subsequently, the materials were subjected to rigorous evaluation for their hemolytic effect, anti-inflammatory properties, and cytotoxicity. Remarkably, the findings revealed a notable absence of typical hemolytic effects in materials incorporating surface-bound cucurbit[n]urils. This observation underscores the potential of these modified materials as biocompatible alternatives. Notably, this discovery presents a promising avenue for the fabrication of resilient and efficient biocomposites, offering a viable alternative to conventional approaches. Furthermore, these findings hint at the prospect of employing supramolecular strategies involving encapsulated cucurbit[n]urils in analogous processes. This suggests a novel direction for further research, potentially unlocking new frontiers in material engineering through the exploitation of supramolecular interactions.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38668179

ABSTRACT

Biowaste conversion into activated carbon is a sustainable and inexpensive approach that relieves the pressure on its disposal. Here, we prepared micro-mesoporous activated carbons (ACs) from cucumber peels through carbonization at 600 °C followed by thermal activation at different temperatures. The ACs were tested as supercapacitors for the first time. The carbon activated at 800 °C (ACP-800) showed a high specific capacitance value of 300 F/g at a scan rate of 5 mV/s in the cyclic voltammetry and 331 F/g at the current density of 0.1 A/g in the galvanostatic charge-discharge analysis. At the current density of 1 A/g, the specific discharge capacitance was 286 F/g and retained 100% capacity after 2000 cycles. Their properties were analyzed by scanning electron microscopy, energy-dispersive X-ray analysis, porosity, thermal analysis, and Fourier-transform infrared spectroscopy. The specific surface area of this sample was calculated to be 2333 m2 g-1 using the Brunauer-Emmett-Teller method. The excellent performance of ACP-800 is mainly attributed to its hierarchical porosity, as the mesopores provide connectivity between the micropores and improve the capacitive performance. These electrochemical properties enable this carbon material prepared from cucumber peels to be a potential source for supercapacitor materials.

3.
Polymers (Basel) ; 16(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38675024

ABSTRACT

The problem of tumour therapy has attracted the attention of many researchers for many decades. One of the promising strategies for the development of new dosage forms to improve oncology treatment efficacy and minimise side effects is the development of nanoparticle-based targeted transport systems for anticancer drugs. Among inorganic nanoparticles, mesoporous silica deserves special attention due to its outstanding surface properties and drug-loading capability. This review analyses the various factors affecting the cytotoxicity, cellular uptake, and biocompatibility of mesoporous silica nanoparticles (MSNs), constituting a key aspect in the development of safe and effective drug delivery systems. Special attention is paid to technological approaches to chemically modifying MSNs to alter their surface properties. The stimuli that regulate drug release from nanoparticles are also discussed, contributing to the effective control of the delivery process in the body. The findings emphasise the importance of modifying MSNs with different surface functional groups, bio-recognisable molecules, and polymers for their potential use in anticancer drug delivery systems.

4.
Molecules ; 29(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38398603

ABSTRACT

Due to traumatic injuries, including those from surgical procedures, adhesions occur in over 50% of cases, necessitating exclusive surgical intervention for treatment. However, preventive measures can be implemented during abdominal organ surgeries. These measures involve creating a barrier around internal organs to forestall adhesion formation in the postoperative phase. Yet, the effectiveness of the artificial barrier relies on considerations of its biocompatibility and the avoidance of adverse effects on the body. This study explores the biocompatibility aspects, encompassing hemocompatibility, cytotoxicity, and antibacterial and antioxidant activities, as well as the adhesion of blood serum proteins and macrophages to the surface of new composite film materials. The materials, derived from the sodium salt of carboxymethylcellulose modified by glycoluril and allantoin, were investigated. The research reveals that film materials with a heterocyclic fragment exhibit biocompatibility comparable to commercially used samples in surgery. Notably, film samples developed with glycoluril outperform the effects of commercial samples in certain aspects.


Subject(s)
Hyaluronic Acid , Urea , Humans , Tissue Adhesions/prevention & control , Carboxymethylcellulose Sodium
5.
Article in English | MEDLINE | ID: mdl-36437725

ABSTRACT

BACKGROUND: Chamaenerion latifolium is a perennial herbaceous plant of the Onagraceae family. The purpose of this study was to evaluate and compare the volatile chemical components of the aerial parts of Chamaenerion latifolium growing in the Republic of Kazakhstan. METHODS: The leaves and stems of Chamaenerion latifolium were extracted with hexane and analysed by gas chromatography-mass spectrometry (GC-MS). RESULTS: The regularisation of peak areas method was used to calculate the concentrations of the sixty-five identified compounds. CONCLUSION: Among them, the major components are alkanes (leaves 31.339%, stems 48.158%), esters (leaves 10.216%, stems 12.196%), alcohols (leaves 5.483% and stems 5.14%), aldehydes (leaves 3.155%, stems 1.592%), triterpenoids (leaves 2.247% stems 3.785%).


Subject(s)
Oils, Volatile , Plant Leaves/chemistry , Gas Chromatography-Mass Spectrometry
6.
Molecules ; 27(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35164282

ABSTRACT

Electrochemical methods have been increasingly gaining popularity in the field of wastewater treatment. However, the performance of these methods can be highly affected by the polarity direction as determined by the electrodes arrangement (anode to cathode or cathode to anode); as well as the characteristics of the wastewater to be treated as determined by the type of wastewater. The presented research work investigated the relationship between polarity direction and the removal of pollutants from poultry slaughterhouse wastewater using titanium and aluminium electrode materials. In the first case, the wastewater was exposed to the Ti (anode)-Al (cathode) combination, whereas in the second case the wastewater was subjected to the Al (anode)-Ti (cathode) arrangement. The two cases were designed to see if the polarity direction of the chosen electrode materials affected the removal of pollutants. The removal efficiencies were computed as a ratio of the remaining concentration in the treated effluent to the concentration before treatment. It was observed that the production processes generate highly fluctuating wastewater in terms of pollution loading; for instance, 422 to 5340 Pt-Co (minimum to maximum) were recorded from color, 126 to 2264 mg/L were recorded from total dissolved solids, and 358 to 5998 mg/L from chemical oxygen demand. Also, the research results after 40 min of retention time showed that both electrode arrangements achieved relatively high removal efficiencies; Whereby, the aluminium to titanium polarity achieved up to 100% removal efficiency from turbidity while the titanium to aluminium polarity achieved a maximum of 99.95% removal efficiency from turbidty. Also, a similar phenomenon was observed from total dissolved solids; whereby, on average 0 mg/L was achieved when the wastewater was purified using the aluminium to titanium arrangement, while on average 2 mg/L was achieved from the titanium to aluminium arrangement. A little higher removal efficiency discrepancy was observed from ammonia; whereby, the aluminium to titanium arrangement outperformed the titanium to aluminium arrangement with average removal efficiencies of 82.27% and 64.11%, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...